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We study the motion of a dimer in a one-dimensional spatially periodic washboard potential. The tilt of the
latter is time-periodically modulated by an ac field. We focus interest on the detrapping of the �static� ground
state solution of the dimer caused by the ac field. Moreover, we demonstrate that slow tilt modulations not only
induce a trapping-detrapping transition but drive the dimer dynamics into a regime of transient long-range
running states. Most strikingly, the motion proceeds then unidirectionally, so that the dimer covers huge
distances regardless of the fact that the bias force in the driven system vanishes on the average. We elucidate
the underlying dynamics in phase space and associate long-lasting running states with the motion in ballistic
channels occurring due to stickiness to invariant tori.
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I. INTRODUCTION

Transport phenomena play a fundamental role in many
physical systems. In this context the so-called washboard
potential, due to its ubiquity and simplicity, establishes the
prototype of a periodic potential and is employed in a num-
ber of applications, including Josephson junctions �1�, charge
density waves �2�, superionic conductors �3�, rotation of di-
poles in external fields �4�, phase-locked loops �5�, and dif-
fusion of dimers on surfaces �6–12� to quote a few. By ap-
plication of an external time-periodic driving to the
washboard potential, interesting effects such as phase-
locking, hysteresis �13�, and stochastic resonance �14� are
found. Recent investigations have dealt with the particle
movement in a washboard potential whose tilt is time-
periodically varied by a weak external modulation field
�15–18�. It has been demonstrated that adiabatic modulations
of the tilt lead to the generation of transient transport dynam-
ics related to enormous directed particle flow. An explanation
for this behavior has been given in terms of the underlying
phase space structure of the driven one-degree-of-freedom
system promoting the motion in ballistic channels �19�.

In this paper, we study an extension of previous work on
individual particle �monomer� dynamics and consider the
case when two particles interact due to harmonic coupling,
constituting a dimer. For nonvanishing coupling strength,
pronounced relative vibrations of the monomer-monomer
distance are possible. On the other hand, in the limit of
strong monomer-monomer coupling, distance vibrations are
inhibited and thus the resulting rigid dimer reduces to a one-
particle system, viz., effectively a monomer. The driven dy-
namics of the latter can be treated in the same manner as
mentioned in �15–18�. Considering intermediate coupling
strengths, we focus interest on nonrigid dimers exhibiting
distance vibrations. Motion takes place in a phase space for
which details of the intricate structures remain elusive, not
least due to the higher dimensionality. Whether in systems
with a larger number of �microscopic� degrees of freedom
such �macroscopic� behavior as collective motion leading to
a directed flow emanates from higher-dimensional dynamics
is not obvious. It is the objective of the current work to

explore under which conditions in a system of coupled par-
ticles the generation of a directed flow going along with
collective motion is possible.

II. MODEL OF THE DRIVEN DIMER SYSTEM

We study the dimer dynamics with a Hamiltonian of the
form

H = �
n=1

2 � pn
2

2
+ U0�qn� + U1�qn,t�� +

�

2
�q2 − q1 − l0�2, �1�

wherein pn and qn, n=1,2, denote the canonically conjugate
momenta and positions of the two coupled particles evolving
in a periodic, spatially symmetric, washboard potential of
unit period given by

U0�q� = U0�q + 1� = − cos�2�q�/�2�� . �2�

The external, time-dependent forcing field

U1�qn,t� = − F sin��t + �0�qn �3�

causes time-periodic modulations of the tilt of the washboard
potential. It has to be stressed that there is no bias force
involved in the sense that the following average over time
and space vanishes, i.e.,

�
0

1

dq�
0

T=2�/�

dt
�U�q,t�

�q
= 0, �4�

with U�q , t�=U0�q�+U1�q , t�. The two monomers interact
harmonically with coupling strength �. The parameter l0 de-
notes their equilibrium distance.

For a discussion of the dynamics it is convenient to intro-
duce the following canonical change of variables induced by
the generating function: S= 1

2 �q1+q2�Px+ 1
2 �q1−q2�Py, relat-

ing the old and new variables as

p1 =
1

2
�Px + Py�, p2 =

1

2
�Px − Py� , �5�

PHYSICAL REVIEW E 78, 011104 �2008�

1539-3755/2008/78�1�/011104�6� ©2008 The American Physical Society011104-1

http://dx.doi.org/10.1103/PhysRevE.78.011104


Qx =
1

2
�q1 + q2�, Qy =

1

2
�q1 − q2� . �6�

The Hamiltonian expressed in the new variables becomes

H =
1

4
�Px

2 + Py
2� −

1

�
cos�2�Qx�cos�2�Qy� +

�

2
�2Qy + l0�2

− 2F sin��t + �0�Qx. �7�

The corresponding equations of motion, describing the effec-
tive motion of a particle in a two-dimensional potential land-
scape, are given by

Q̈x = − cos�2�Qy�sin�2�Qx� + F sin��t + �0� , �8�

Q̈y = − cos�2�Qx�sin�2�Qy� − ��2Qy + l0� . �9�

Evidently, the impact of the external modulation and the har-
monic coupling occurs in separate equations. The coupling
between the Qx and Qy degrees of freedom results from para-
metric modulations of the respective potential force term.
Apart from that, Eq. �8� for the mean value Qx is equivalent
to the equation q̈+sin�2�q�−F sin��t+�0�=0 of the driven
single-particle case �15,17,18�. Remarkably, as pointed out in
prior literature �15,16�, in a system of uncoupled particles,
i.e., �=0, there results an �unexpected� asymmetry of the
flux of particles, emanating from one potential well and
flowing to the left and right potential wells, which indicates
the existence of directed transport without breaking the re-
flection symmetry in space and time in this system. One
reason for the occurrence of phase-dependent directed trans-
port is the lowering of the symmetry of the flow in phase
space by the ac field, where this asymmetry vanishes only for
specific values of the initial phase �0 �15�.

Due to the similarity between Eq. �8� and the equation of
the driven single-particle case, we surmise that the external
modulation leads to an escape of particles from a potential
well, inducing ongoing rotational motion of the mean value
Qx equivalent to the behavior observed in the study of driven
monomer dynamics �18�. In contrast to that, the amplitude of
the difference variable Qy is bounded due to the harmonic
restoring force associated with the � term in Eq. �9�.

In the following we explore whether it is indeed possible
to detrap the dimer through the impact of a time-dependent
external modulation. The amplitude F of the tilt modulation
term is supposed to be undercritical in the sense that the two
coupled monomers remain trapped in a potential well of the
potential with static positive as well as negative tilt, i.e.,
when U�qn�=U0�qn��Fqn. In other words only for time-
dependent modulations is escape from the potential well pos-
sible due to the arising chaotic dynamics �18�. More pre-
cisely, the trajectory has to be in the stochastic region
emerging around the separatrix in phase space, so that cross-
ing from the interior separatrix region �trapped solutions� to
the outer separatrix region �detrapped solutions� can take
place �18�.

III. INITIAL CONFIGURATION AND POTENTIAL
LANDSCAPE

For our dynamical studies it is assumed that the dynamics
starts off with zero tilt of the potential, i.e., �0=0. In Fig. 1
we illustrate the motion of the dimer in the potential land-
scape Ueff related to the potential term in Eq. �7�,

Ueff = −
1

�
cos�2�Qx�cos�2�Qy� +

�

2
�2Qy + l0�2. �10�

The dimer is initially locked in its ground state, attained
without exerted tilt �F=0�. The trajectory in Fig. 1, starting
from the potential minimum �ground state�, passes from one
well to a neighboring one by crossing a saddle point in be-
tween.

The corresponding stationary states 	Q̃x , Q̃y
 are derived

from Eqs. �8� and �9� with Q̈x= Q̈y =0, yielding two sets

Q̃x
m =

1

2
m, m � Z , �11a�

Q̃y
m = −

1

2
� �− 1�msin�2�Q̃y

m�
�

+ l0�, m � Z , �11b�

Q̃x
n =

1

2�
arccos��− 1�n+1��1

2
+ n + l0�� , �12a�

FIG. 1. Barrier crossing of the trajectory of the dimer emanating
from the minimum, labeled as M, in one potential well and passing
through a saddle, labeled as S, represented by the wiggling solid
line. The untilted potential energy landscape Ueff�Qx ,Qy� is addi-
tionally depicted. The parameter values are l0=0.5, �=5, F=0.4,
�=10−3, and �0=0.
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Q̃y
n =

1

4
+

1

2
n, n � Z . �12b�

Provided that the inequality

�2�1

2
+ n + l0�2

� 1, n � Z , �13�

is satisfied, it can be shown that the stationary points

	Q̃x
n , Q̃y

n
 are of hyperbolic and 	Q̃x
m , Q̃y

m
 are of elliptic type.

The latter represents the ground state, since Ueff�Q̃x
m , Q̃y

m�
�Ueff�Q̃x

n , Q̃y
n�. Otherwise, if the inequality �13� is not satis-

fied, the only possible stationary states are represented by

	Q̃x
m , Q̃y

m
. Regarding the ground state in the latter situation
the following cases have to be considered: If l0�0.5, the
ground state is attained for even m, whereas for l0�0.5 m is
odd.

In the following, due to symmetry in the x direction it is
sufficient to consider only the motion of the dimer in the
range Qx� �0,1�, which is equivalent to m=0,1 and n=−1
in the expressions �11a�, �11b�, �12a�, and �12b�. We denote
the ground state by 	Qx,g ,Qy,g
 and its energy with Eg. Like-
wise, for the saddle point 	Qx,s ,Qy,s
 and its energy is Es.

In order to overcome the local potential barrier, the dimer
has to gain sufficient energy from the external modulation
field. The height of the potential barrier is determined by
	E=Es−Eg. 	E varies with the coupling strength as illus-
trated in Fig. 2, where the potential Ueff�Qx ,Qy� as a function
of the difference coordinate Qy is drawn for the fixed ground
state value Qx,g=0 for coupling strength �=0.5 �graph la-
beled as 1� and �=5 �graph labeled as 3�. The minimum
value of the potentials corresponds to the respective ground

state energy. In addition, Ueff�Qx,s=1 /4,Qy� is depicted and
labeled 2 for �=0.5 and 4 for �=5. The energy of the saddle
point is determined by the minimum value of the graphs 2
and 4. For the lower coupling strength �=0.5, not only is the
distance between the positions of the minima of the graphs
of Ueff�0,Qy� and Ueff�1 /4,Qy� comparatively large, but also
a fairly high difference between the minimal energy levels
results. In comparison, for increased coupling strength �=5
the minima of the corresponding potential curves 3 and 4 are
close together and the energetic gap is considerably lower
than in the preceding case. This becomes clear from Eq.
�12a�. The position of the saddle point and the potential en-
ergy are independent of the coupling strength � for the cho-
sen values l0=0.5 and n=−1. In contrast, the location of the
ground state and the corresponding energy value depend on
�. The position Qy,g is given by the transcendent equation
�11b�. The amplitude of the sinusoidal term decreases with
increasing coupling strength. Hence, the value of the differ-
ence coordinate at the ground state shifts from Qy,g
0 for
�
0 to Qy,g
−l0 /2 with further increasing coupling
strength, so that the position of the saddle point Qy,s=−l0 /2
is approached. On the other hand, according to Eq. �10�, the
corresponding potential energy in the ground state increases
with the value of �. From this it follows that the energetic
gap is considerably lower in the case of stronger coupling.

This energy gap determines the energy barrier that the
dimer has to overcome in the Qx direction in order to accom-
plish motion of the mean coordinate Qx from one potential
well into the neighboring one, a behavior that is called de-
trapping. For a low coupling strength �=0.5, the relative
energy gap is 	E /Ebarrier
2.9 whereas for a stronger cou-
pling strength �=5 the ratio reduces to 	E /Ebarrier
1.8.
Ebarrier=1 /� is the barrier height of the washboard potential
given in Eq. �2�.

IV. FIELD-INDUCED TRAPPING-DETRAPPING
TRANSITIONS

We performed extensive studies of the parameter depen-
dence of the modulation-induced escape of the dimer from
its ground state. As Fig. 3 reveals, in a certain range for the
equilibrium length, escape from the ground state is achieved
provided that a critical coupling strength is exceeded, which
is related to a sufficiently low 	E. Interestingly—regarding
the detrapping of the dimer—the choice of the modulation
frequency plays no important role. We observed barrier
crossing of the dimer in a wide range of the modulation
frequency.

However, it should be stressed that not all escapes from
the potential well lead necessarily to unidirectional motion of
the dimer, i.e., a running solution persisting throughout our
long simulation time of t=106. This becomes evident from
Fig. 4 where the time evolution of the mean coordinate Qx is
displayed for several values of the modulation frequency.
The coupling strength �=5 is chosen such that in accordance
with Fig. 3 detrapping of the dimer is assured for time-
periodic modulations of the tilt. For modulations with �=1,
the dimer does not get far away from its initial position,
while for lower frequencies �=0.1 and 0.01 considerably
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FIG. 2. �Color online� Potential energy Ueff as a function of the
difference coordinate Qy for fixed Qx,g=0 �labeled 1 and 3 for cou-
pling strength �=0.5 and 5, respectively� and fixed Qx,s=0.25 �la-
beled 2 and 4� for coupling strength �=0.5 and 5, respectively�. The
minimum of the graphs 1 and 3 determines the position of the
ground state Qy,g while for the graphs 2 and 4 the minimum lies at
the value of the saddle point Qy,s=−l0 /2=−0.25. The remaining
parameter values are l0=0.5 and F=0.
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long distances away from the initial position are covered but
the motion does not proceed unidirectionally. By compari-
son, for slower modulations with �=10−3 and strong enough
coupling, illustrated here for �=5 and 10, the dimer motion
proceeds with virtually constant velocity directed over a
huge distance, as seen in the bottom panel of Fig. 4. �For
comparison, the trajectory is also displayed for an undercriti-
cal coupling strength of �=3.14 for which no enhanced
propagation occurs.� In such cases the difference variable Qy
typically performs quasiregular oscillations with a maximal
amplitude in a certain interlude, at the end of which the
maximal amplitude changes rather abruptly to a new value.
As a consequence, the distance between monomers varies
such that occasionally one of the monomers overtakes the
other one as depicted in Fig. 5.

Moreover, in Fig. 1 it is clearly seen that the first escape
path goes from the minimum through a saddle point into the
next potential valley. For subsequent escapes the dimer, hav-
ing gathered meanwhile more energy from the modulation
field, is enabled to pass the potential barriers near the corre-
sponding saddles.

To gain more insight into the dynamics in the five-
dimensional phase space spanned by the variables
�Px , Py ,Qx ,Qy ,�=�t�, we utilize Poincaré plots where the
cross section is determined as follows:


: = 	��Px,Qx,���Qy = 0,Py � 0
 . �14�

We represent in Fig. 6 Poincaré plots projected on the �-Px
plane corresponding to the dynamics shown in Fig. 4. The
top panel shows the result for a driving with �=1 while in
the bottom panel the modulation frequency is �=10−3.
Clearly, in the former case the traversed momentum range is
not only rather strongly confined but also virtually symmet-
ric with respect to Px=0 and thus no direction of motion is
distinguished �cf. also Fig. 4�. In contrast to this for adiabatic

modulations with �=10−3 the momentum Px experiences
vast alterations in dependence on the value of the phase �.
To be precise, starting from an unbiased potential, i.e., �0
=0, the force term F�t�=F sin��t� produces a negative tilt of
the potential in the interval 0� t�� /�. It happens that at
some instant of time tescape�� / �2�� the coordinate Qx over-
comes the potential barrier and even escapes from the well.
Hence there remains a time interval �tescape ,� /�� during
which the dimer still experiences a force with positive sign
which further enhances the motion in the right direction to-
ward increasing values of Qx. For times � /�� t�2� /�,
the force F�t�=F sin��t� acts in the opposite direction. In
particular, for 2� /�− tescape� t�2� /� the momentum
evolves with its sign reversed compared to the previous en-
hancement period. With this we can estimate the gain in
momentum as follows:

0.35 0.4 0.45 0.5 0.55 0.6 0.65
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l
0

κ

detrapping

FIG. 3. �Color online� Critical coupling strength for dynamical
detrapping as a function of the equilibrium length. The parameter
values are F=0.4 and �0=0. For the choice of � we refer to the
text.
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FIG. 4. �Color online� Time evolution of the center of mass
coordinate Qx. Left panel: Fixed coupling strength �=5 and various
modulation frequencies as indicated in the plot. Right panel: Fixed
�=10−3 and different values of � as indicated in the plot. The
remaining parameter values are l0=0.5 and F=0.4.
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	Px = ��
tescape

�/�

+ �
2�/�−tescape

2�/� �d� ṗ

= ��
tescape

�/�

+ �
2�/�−tescape

2�/� �d��− sin�2�Qx�cos�2�Qy�

+ F sin����� . �15�

For small � the rapidly oscillating part connected with the
first term in the integral averages to zero, and we find

	Px = 2
F

�
cos��tescape� . �16�

In general, the smaller � the higher is the gain in momen-
tum; see also �15,17�.

We briefly discuss the formation of the directed motion.
With this aim we relate the dynamics to the underlying struc-
tures in phase space. In the driven monomer dynamics, aris-
ing for vanishing coupling �=0, the phase space is three
dimensional. Chaotic trajectories, meandering in the arising
stochastic layer, can stick to the border of islands of regular
motion for considerably long times �20,21�. This is due to the
intricate structure of the stochastic layer, where close to reso-
nances at the boundary between regular and chaotic regions
there exists a hierarchy of smaller and smaller islands and
surrounding cantori. The latter can severely restrict the trans-
port in phase space and thus effectively partition the chaotic
layer �21�. Particularly for motion trapped in the vicinity of
islands of stability with nonzero winding number �ballistic
channels�, directed motion in the q direction is enhanced
�17–19�.

For nonlinear Hamiltonian systems with N�2 degrees of
freedom only a few numerical results addressing the exis-
tence of an enhanced trapping regime are known �22,23�. It
is supposed that the role played by cantori in driven systems
with N=1 is played by families of N-dimensional tori, con-

stituting partial barriers in the 2N-dimensional phase space,
to which the chaotic trajectory can stick �22�.

For the driven dimer system with its five-dimensional
phase space, Arnold diffusion is possible. Hence in principle
a chaotic trajectory can wander along the entire stochastic
layer, so exploring eventually the whole phase space
�24–27�. However, due to stickiness to higher-dimensional
invariant tori, Arnold diffusion can be severely suppressed so
that certain regions are distinguished in which the trajecto-
ries become trapped for longer times �22�. In fact, our find-
ings �cf. Fig. 6� indicate that in the adiabatically driven
dimer system the trajectories are captured in ballistic chan-
nels associated with stickiness to two-dimensional invariant
tori, leading to long-lasting directed motion. This is further
underpinned by the fact that in the dimer system the mean
value Qx evolves in the same manner as the single coordinate
q in the monomer counterpart, viz., it exhibits gigantic
growth over a long period of time, implying that motion
takes place in ballistic channels �18�.
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FIG. 5. �Color online� Time evolution of the difference coordi-
nate Qy. The parameter values are l0=0.5, �=5, F=0.4, �=10−3,
and �0=0.
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FIG. 6. �Color online� Poincaré plots presented in the �-Px

plane. The phase variable � is given mod�2��. Illustrated are a
driving with �=1 �top panel� and an adiabatic driving with �
=10−3 �bottom panel�. The remaining parameter values are l0=0.5,
�=0.5, F=0.4, and �0=0.
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V. SUMMARY

In conclusion, we have shown that it is possible to detrap
the ground state of a dimer in a washboard potential through
time-periodic modulations of its tilt. Moreover, when the tilt
modulations vary, adiabatically directed transport of the
dimer, viz., a running state, is initiated. Most importantly,
unidirectional motion of the dimer prevails over a very long
period of time. In terms of phase-space dynamics we have
found evidence that this phenomenon is linked with en-
hanced trapping of the trajectories around families of invari-
ant tori. For systems involving many more degrees of free-
dom than in the dimer case, the issue of stickiness of

invariant tori in high-dimensional phase space needs to be
explored in much more detail. In particular, it has to be de-
termined whether a macroscopic feature such as directed col-
lective transport, which is related to motion in ballistic chan-
nels, is exhibited by systems with many microscopic degrees
of freedom.
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